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LETTER TO THE EDITOR 

On the relativistic Feynman-Kac-Ito formula 
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t Dipartimento di Matematica, Universiti di Roma I ,  Piazzale Aldo Mor0 2,00185 Roma, 
Italy 
$ Research Center BiBoS, Universitat Bielefeld, 4800 Bielefeld 1, Federal Republic of 
Germany 

Received 10 May 1990 

Abstract. We construct a Feynman-Kac-Ito formula for the relativistic Hamiltonian 

H={c2( - i f iV-e / cA)2+M2~4}”2-M~2+ V.  

The main ingredient of our approach is a suitable random time T ~ (  t )  which is used to turn 
the ordinary FKI formula into the relativistic one. 

The Feynman-Kac-Ito (FKI) formula [l]: 

exp(-tJf/h)$(x) 

=E[$(x+\/ ;w,)exp(- l /h)  V ( x + ~ w , ) d s + i e / c F ( t , x ,  w , A )  

(where v = A /  M and s ++ w, is the three-dimensional Brownian motion starting at the 
origin) gives a probabilistic representation of the semigroup t H exp(-tH/h) for 
the Schrodinger Hamiltonian H = 1/2M(-ihV - e / c A ) 2 +  V (in a magnetic field). 
The vector potential A appears in the expectation E( a )  only through the phase 
factor exp -i( e /  Ac)F where: 

F (  t, x, w, A )  = \/; A( x + \/; 10,) - d w, + v/ 2 div A( x + 6 w, ) ds. 

A consequence of this fact is the diamagnetic inequality [ 11 which ensures that energy 
can only rise when the magnetic field is turned on. The stability of matter under 
Coulomb forces is therefore unaffected by an external magnetic field in non-relativistic 
quantum mechanics. The stability of matter has been also studied [2-51 when the 
non-relativistic kinetic energy operator -( A2/2M)A is replaced by the relativistic one 
{ -h2~2A+M2~4}”2 ,  but such a change leads to an unpleasant surprise: atoms are 
stable no more when the atomic number Z is larger than Z, = 2 / ~ a  = 84,  nevertheless 
stability can be proved when 2 S 2,. From a physical point of view this means, of 
course, that these relativistic quantum models with a fixed number of charged particles 
reach the boundary of their domain of validity when 2 = 2,. It is worthwhile observing 
that similar results also hold for the equations of Dirac (2, = a-’) and Klein-Gordon 
(2, = 1/2a)  in an electrostatic potential 4, therefore, on this ground, there are no 
qualitative reasons to prefer them to the quantum relativistic Hamiltonian H = 
{-h2c2A+ M2~4}1’2+ eq5. 
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The main task of our paper is to provide a relativistic FKI formula for the Hamil- 
tonian: 

H={c2( - ihV-e /cA)2+M2~4}1’2 -M~2+ V =  Ho(A)+ V (1) 

which is supposed to describe a spinless relativistic charged particle in the potential 
V and in a magnetic field B = rot A.  Despite the troublesome square root in (1) there 
is a simple way of turning the usual FKI formula into the relativistic one by using a 
probabilistic idea essentially due to LCvy. Let s H w: be an additional one-dimensional 
Wiener process independent from the three-dimensional Brownian motion s H w, and 
let the random time T,( t )  be the smallest s such that cs + fi w: = ct 

T,( t )==inf{s~o:  cs+& w:=ct}. ( 2 )  

It is not difficult to see that the process t H ~ , ( t )  is a non-decreasing jump Markov 
process with independent and time homogeneous increments (LCvy process). We proved 
in [6] that: 

(3) 

for all y 2 0 .  Therefore, if r is a non-negative self-adjoint operator, it follows by the 
spectral theorem that 

(4) 

in other words the semigroup t - exp( - t H /  h )  for H = {2Mc2r + M2c4}”2 - Mc2 can 
be constructed as the averaged semigroup of r after replacing the deterministic time 
t by the random one ~ , ( t ) .  By choosing 

2 4 1‘2- E(exp(-Tc( t ) y / h ) )  = exp(-t/ h ) ( { 2 ~ c ~ y +  M c } MC’) 

e x p ( - t / h ) ( { 2 ~ c ~ ~ +  M ~ C ~ } ’ / ~ -  MC’) = E(exp- .,(t)r/h) 

as the Schrodinger Hamiltonian: 

r = 1 / 2 M ( - i h V - e/ CA) ( 5 )  

(6) 

where the expectation E( . )  is taken with respect both to s -ws and t H T J t )  or, 
equivalently, with respect to the four-dimensional Brownian motion s H wr = ( w : ,  w,). 

Now it is possible to extend this result to the more general Hamiltonian H =  
&(A) + V. The Trotter-Kat0 formula gives, in fact: 

and by recalling the FKI formula, we get from (4) 

exp(- tHo(A) /h)W) =E[Jl(x+fi  w T X f ) )  exp-i(e/hc)F(.r,(t), x, w, A)] 

exP(-tH/ fi)$(x) 

= E [  + ( x + g f )  exp(-l/h) 

)I x ( I o f  V ( x + 5 , ) d s + i e / c F ( ~ , ( t ) , x ,  w,A) (7) 

where tC = & w7c(0 (a jump Markov process with independent and time homogeneous 
increments). A simple consequence of (7) is that the diamagnetic inequality still holds. 
Of course the effect of spin is crucial for the stability of matter in a magnetic field. 
The extension of our technique to Dirac Hamiltonians with an external magnetic field 
is possible and it is the subject of a forthcoming paper. It should be remarked that 
Ichinose and Tamura proposed [7 ,8]  a different relativistic FKI formula based only 
upon the Markov process t H &  which they introduced independently from any 
reference to Brownian motion. Unfortunately their Hamiltonian is not gauge invariant 
up to a unitary transformation. Without magnetic field both formulae coincide and 
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assume the structure of the Feynman-Kac formula with t H t1 replacing the diffusion 
t H & w,. We think that the construction of gf as & w , ~ ( ~ )  is useful because it allows 
one to grasp more easily the probabilistic meaning of the non-relativistic limit: the 
random time T,( t )  converges in probability to the deterministic time t when the speed 
of light c goes to infinity [6]. Now we want to recall the relations between the relativistic 
quantum mechanics described here and the Klein-Gordon equation as a first quantized 
theory. Let us consider, first, the Klein-Gordon equation in a purely magnetic external 
field: 

c-2& + (-iV - e /  hcA)2cp + M2~2h-2cp = 0 (8) 

which can be transformed into the first-order equation: 

where 41 = cp, 42 = h /  Mc2dlcp and o = c { (  -iV - e /  ficA)’+ M2c2/ h2}1’2. It is well known 
that the Klein-Gordon Hamiltonian Ko(A)  can be diagonalized as (‘t -”,) and 
therefore equation (9) decouples in two independent relativistic Schrodinger equations 
(corresponding to positive and negative frequencies) with * H o ( A )  as Hamiltonians. 
The link with the previous theory is therefore fully established in a purely magnetic 
external field but when an external electric field is also present, the two theories are 
no longer equivalent except to first order of perturbation theory. This fact is not 
astonishing since a large external electric field can create pairs of particles and 
antiparticles and one-body theories are not physically satisfactory in this context. 
Before ending this paper we show that our technique also works in the presence of 
an external static scalar field U. The Klein-Gordon equation takes, in this case, the form 

(10) 

which can be transformed, as before, in the first-order equation (9) with o = 
c{-A+ U S  M2c2/A2}1’2 and then diagonalized. The resulting couple of equations are 
relativistic Schrodinger equations with Hamiltonians *{2Mc2T + M2C:4}”2 where r = 
h2/2M(-A+ U ) .  As a consequence of that a relativistic Feynman-Kac formula is 
constructed as: 

Up + M’~’h-~cp = - Utp 

T C ( f )  

exp(- tH/h)q(x)=E( $ ( x i & )  exp-h /2M U ( x S &  w s )  ds) 

when H = hc{ -A + U + M2c2/ h2}1’2 - Mc2. We finally observe that the integrals involv- 
ing the scalar potential U in (11) and the potential V in (7)  are different, nevertheless 
they coincide in the non-relativistic limit as T,( t )  + t. After the completion of this paper 
we discovered references [9, 101 on related but not overlapping subjects. In such articles 
is described how to construct a relativistic Feynman-Kac (not Ito) formula for 
Hamiltonians: 

H = ( - C ~ ~ ’ A + M ~ C ~ } ‘ ’ ~ -  Mc2+ V 

by means of the random time (2) and some of its consequences. This was also part of 
the content of our previous work [6]. 
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